A NOTE ON PROTEIN SEQUENCING

Submitted BY

Dr. Namrata Kahar

(Guest Faculty)

Department of Biotechnology

Govt. Digvijay Autonomous College Rajnandgaon (C.G.) 491441, INDIA

SYNOPSIS -

- > Introduction
- > History
- > Determination of amino acid composition-

Hydrolysis

Separation

Quantitative analysis

➤ Mechanism of protein sequencing by—

Chemical method

Physical method

- > Application of protein sequencing
- > Summary
- **Conclusion**
- > References

INTRODUCTION –

- Protein sequencing is a technique to determine the amino acid sequence of a protein.
- It is a method to understand the structure and function of proteins in living organism.
- Amino acid sequence determines the eventual three dimensional structure of the protein.
- All proteins are polymers of amino acid.

HISTORY -

Pehr Edman (1947) -

He found the method to decode the amino acid sequence of a protein using chemicals.

Fredrick Sanger (1955) -

He was able to present the complete sequence of insulin.

DITERMINATION OF AMINO ACID COMPOSITION-

- Amino acid composition and purity must be known before starting sequencing.
- ➤ The polypeptide chains of multimeric proteins should be separated and molecular weight of each chain should be measured.

> The determination of amino acid is done by

Hydrolysis

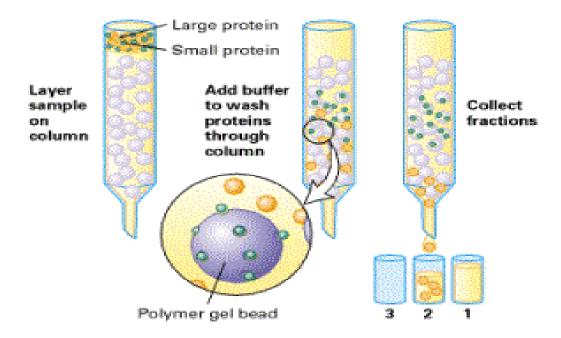
Separation

Quantitative analysis

Hydrolysis

Peptide bonds are readily hydrolyzed by heating with either acid and base. The peptide is hydrolyzed into its constituent amino acids by heating it with 6N HCL at 110° c for 10 to 24 hours. An evacuated sealed tube is the usual procedure for complete hydrolysis.

• Separation


Separation of protein is done by chromatography, dialysis, and fractionation etc.

SEPARATION BY GEL CHROMATOGRAPHY-

- Gel filtration (chromatography), is also known as molecular sieve chromatography.
- Gel filtration chromatography separates molecules according to their size and shape.
- The stationary phase consists of beads containing pores that span a relatively narrow size range.
- Smaller molecules spend more time inside the beads than larger molecules and therefore elute later (after a larger volume of mobile phase has passed through the column).

- It's the best method for separation of molecules differing in molecular weight because:
- It doesn't depend on temperature, pH, ionic strength and buffer composition. So separation can be carried out under any conditions.
- There is very little adsorption.
- There is less zonal spreading than in other techniques.
- The elution volume is related to the molecular weight.

(a) Gel filtration chromatography

(b) Ion-exchange chromatography

Fig . No.- 1. Gel chromatography

• Quantitative Analysis

The amino acid residue of peptides reacts quantitatively with ninhydrin.

On heating, a α -amino acid reacts with two molecules of ninhydrin to yield an intensely coloured product. Purple colour is given in this test by all amino acids and peptide having a free α -amino group where as proline gives yellow colour.

Amino acid+ 2 ninhydrin \longrightarrow CO₂ + aldehyde + final Complex (yellow/purple) + $3H_2O$

Purple /yellow colour complex

Fig . No.- 2. Ninhydrin reaction

MECHANISM OF PROTIEN SEQUENCING -

Chemical method-

Sanger's method

Edman's method

• **Physical method** –Mass spectrometry

Sanger's method-

- Fredrick Sanger was a Nobel Laureate.
- He showed for the first time that amino acids are covalently together by α -amino and α carboxyl group.
- He suggested stepwise release and identification of amino acid starting from N-terminal.
- He used reagent fluoro dinitro benzene (FDB) which is commonly called Sanger's reagent.
- The FDB reacts with free NH₂ group of N-terminus.
- Upon hydrolysis a yellow coloured dinitrophenol (DNP) derivative of Nterminal amino acid is produced.
- The DNP amino acid is identified comparing it with a known standard DNPamino acid by using gel chromatography.

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_3N
 O_2N
 O_4N
 O_4N

Fig. No. 3. Sanger's method

Dansyl Chloride -

- The dansyl chloride (dimethyl amino naphthalene 5 sulfonyl chloride) is commonly used because it forms intensively coloured derivatives.
- That can be detected with high sensitivity that the dinitro phenyl compound.
- It reacts with an uncharged C and N terminal to form a sulfonamide derivatives that is the stable under condition that by hydrolyser peptide bonds.
- Although the dansyl method for determining the amino terminal residue is sensitive and powerful.

FIG. NO.- 4. DANSYL CHLORIDE METHOD

Disadvantages -

- ❖ It cannot be used repeatedly on the same peptide because the peptide is totally degraded in the acid hydrolysis step.
- ❖ The Sanger's method is more sensitive and efficient procedure.
- ❖ The dansyl chloride is 100 times more sensitive than the Sanger's method.
- ❖ The Sanger's method is only useful for identification of N-terminal residue of a peptide.

Edman degradation -

> It involves sequential identification of amino acids from N to C termini.

- ➤ Phenyl isothiocynate (PTC) reagent is used for the Edman degradation.
- > The amino terminal (N-terminal residue of a protein can be identifies by reaction the protein with the PTC that forms a stable covalent link with the free α amino group prior to hydrolysis with 6M HCl
- ➤ Phenyl isothiocynate reacts with the uncharged terminal amino group of the peptide to form a phenyl thiocarbonyl derivation.
- ➤ The labeled N-terminal amino acid can be identified by comparison of its chromatographic properties with stanrdard fluorodinitro benzene and dansyl chloride.
- ➤ Then, under mild acidic the cyclic (PTH) Phenylthio hydantoin of the terminal amino acid is librated which leaves an intact peptide shorted by one amino acid.
- ➤ The released PTH amino acid is identified by high performance liquid chromatography.
- ➤ The sequencing technique has been automated and refined so that upwards of 50 residues from the N-termines of a protein can be sequenced from picomolequantities of material.

FIG. NO. 5. EDMAN DEGRADATION

<u>Advantages – </u>

The great advantage of the Edman method is that the rest of the peptide chain after removal of the N-terminal amino acid is left intact for further cycles of this procedure, thus the Edman method can be used in a sequential fashion to identify several or many consecutive amino acid residues starting from the N-terminal end.

<u>Disadvantages -</u>

- The Edman degradation proceeds from the N-terminus of the protein it will not work it the N-terminal amino acid has been chemically modified.
- It also required the use of either guess work or a separate- procedure to determine the position of disulfide bridges.

Protein sequencing by Mass Spectrometry -

- Mass spectrometry is an important emerging method for the characterization of proteins.
- The two primary methods for ionization of whole proteins are electro spray ionization (ESI) and matrix assisted laser desorption/ionization (MALDI).
- Mass spectrometer has three main parts for characterizing the protein
 - 1. An ionization source
 - 2. A mass analyzer
 - 3. An ion detector

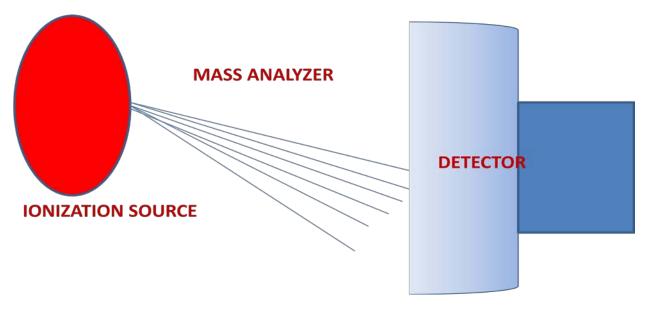


Fig no.6. Parts of mass spectrometer

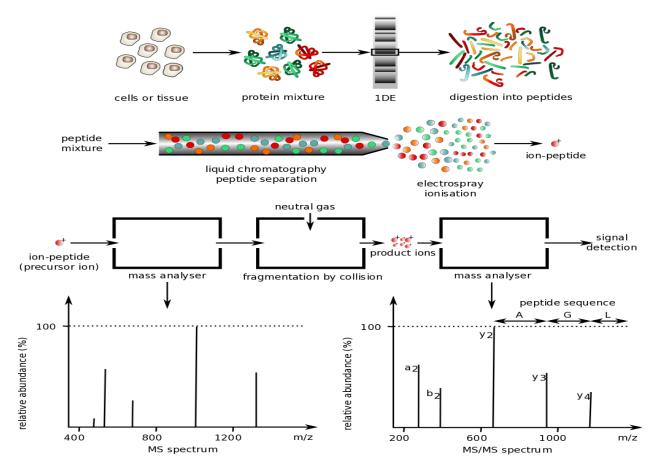


Fig no7. Mass Spectrometry

- Digested the peptide bonds (by protease enzyme).
- Ionization by MALDI (matrix assisted laser desorption/ionization) or electro spray.
- Then ionized molecules are introduced into mass- analyzer.
- Using the mass spectrometer the masses of each of these ionized peptides is calculated.
- Using the masses it is now possible to know the amino acid sequence of this protein.

<u>ADVANTAGES</u> –

- Stable isotopic labeling of proteins may be used to discriminate between contaminants and original partners using MS (mass spectrometry) techniques.
- MS (mass spectrometry) has also made advantages in the analysis of membrane proteins.

DIS-ADVANTAGES-

- Miscalibration is one of the main errors of MS spectrometry.
- MALDI doesn't favor the identification of hydrophobic peptides.

APPLICATIONS OF PROTEIN SEQUENCING

- > mRNA /protein analysis and coding SNP (single nucleotide protein) scoring tools.
- ➤ Knowledge of the sequence of amino acids in a protein can offer insights into its three dimensional structure and its function in cellular location and evolution.
- ➤ Certain amino acid sequences serve as signals that determine the cellular location chemical modification on a half life of a protein.
- ➤ Protein sequences can elucidate the history of life on Earth.

SUMMARY-

• The protein is a polypeptide chain which is made up of amino acid monomers polymerization.

- Protein sequencing is the sequencing of monomer of peptide chain which is amino acid.
- For sequencing of protein firstly we determined the amino acid sequences which are done by hydrolysis, separation and quantitative analysis.
- The protein sequencing is done by two methods which are chemical and physical method.

CONCLUSION-

- Protein sequencing also gives information regarding which conformation the protein adopts.
- Discovering the structures and functions of proteins in living organisms is an important tool for understanding cellular processes.
- Not all proteins contain all the amino acid, nor do the amino acids occur with equal frequency.
- The amino acids have N-terminal end and C-terminal end.

REFERENCES –

Cox M. Michael and

Nelson L. David 2008 Principles of Biochemistry, 5th Edition

Lehninger L. Albert 2009 Biochemistry, 2nd Edition

Stryer Lambert 2009 Principle of Biochemistry, 2nd Edition